Some results on vertex-edge Wiener polynomials and indices of graphs

author

  • M. azari Assistant Professor, Department of Mathematics, Kazerun Branch, Islamic Azad University, P. O. Box:73135-168, Kazerun, Iran
Abstract:

The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second vertex-edge Wiener indices of them with each other. Also, we compute these polynomials and indices for some well-known graphs. Then, we study the relation between the vertex-edge Wiener polynomials of Cartesian product of graphs with the Wiener polynomial and vertex-edge Wiener polynomials of the primary graphs and apply the results to compute the vertex-edge Wiener indices of Cartesian product of graphs. As applications of these results, we present exact formulas for computing the first and second vertex-edge Wiener indices of rectangular grids, C4-nanotubes, C4-nanotori, Hamming graph, and hypercubes.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A note on vertex-edge Wiener indices of graphs

The vertex-edge Wiener index of a simple connected graph G is defined as the sum of distances between vertices and edges of G. Two possible distances D_1(u,e|G) and D_2(u,e|G) between a vertex u and an edge e of G were considered in the literature and according to them, the corresponding vertex-edge Wiener indices W_{ve_1}(G) and W_{ve_2}(G) were introduced. In this paper, we present exact form...

full text

a note on vertex-edge wiener indices of graphs

the vertex-edge wiener index of a simple connected graph g is defined as the sum of distances between vertices and edges of g. two possible distances d_1(u,e|g) and d_2(u,e|g) between a vertex u and an edge e of g were considered in the literature and according to them, the corresponding vertex-edge wiener indices w_{ve_1}(g) and w_{ve_2}(g) were introduced. in this paper, we present exact form...

full text

On the Wiener Index of Some Edge Deleted Graphs

The sum of distances between all the pairs of vertices in a connected graph is known as the {it Wiener index} of the graph. In this paper, we obtain the Wiener index of edge complements of stars, complete subgraphs and cycles in $K_n$.

full text

Relationship between Edge Szeged and Edge Wiener Indices of Graphs

Let G be a connected graph and ξ(G) = Sze(G)−We(G), where We(G) denotes the edge Wiener index and Sze(G) denotes the edge Szeged index of G. In an earlier paper, it is proved that if T is a tree then Sze(T ) = We(T ). In this paper, we continue our work to prove that for every connected graph G, Sze(G) ≥ We(G) with equality if and only if G is a tree. We also classify all graphs with ξ(G) ≤ 5. ...

full text

Computing Wiener and hyper–Wiener indices of unitary Cayley graphs

The unitary Cayley graph Xn has vertex set Zn = {0, 1,…, n-1} and vertices u and v are adjacent, if gcd(uv, n) = 1. In [A. Ilić, The energy of unitary Cayley graphs, Linear Algebra Appl. 431 (2009) 1881–1889], the energy of unitary Cayley graphs is computed. In this paper the Wiener and hyperWiener index of Xn is computed.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 15

pages  149- 162

publication date 2018-10-23

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023